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Abstract
It has been suggested that an application of a conducted electrical weapon (CEW) might cause muscle injury such as rhabdo-
myolysis and an acute inflammatory response. We explored this hypothesis by testing the effects of electrical weapons on
circulating markers of inflammation and muscle damage. In a prospective study, 29 volunteers received a full-trunk 5-s
TASER® X26(E) CEW exposure. Venous blood samples were taken before, 5 min after, and at 24 h following the discharge.
We tested for changes in serum levels of C-reactive protein (CRP), alkaline phosphatase (ALP), myoglobin, albumin, globulin,
albumin/globulin ratio, aspartate and alanine aminotransferase, creatine kinase, total protein, bilirubin, and lactic acid dehydro-
genase. Uncorrected CRP and myoglobin levels were lower in the immediate post exposure period (CRP levels 1.44 ± 1.39 v
1.43 ± 1.32 mg/L; p = 0.046 and myoglobin 36.8 ± 11.9 v 36.1 ± 13.9 μg/L; p = 0.0019) but these changes were not significant
after correction for multiple comparisons. There were no changes in other biomarkers. At 24 h, CRP levels had decreased by 30%
to 1.01 ± 0.80 mg/L (p = 0.001 from baseline). ALP was unchanged immediately after the CEW application but was reduced by
5% from baseline (66.2 ± 16.1 to 62.7 ± 16.1 IU/L; p = 0.0003) at 24 h. No other biomarkers were different from baseline at 24 h.
A full-trunk electrical weapon exposure did not lead to clinically significant changes in the acute phase protein levels or changes
in measures of muscle cellular injury. We found no biomarker evidence of rhabdomyolysis.
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Introduction

The handheld conducted electrical weapon (CEW) carried by
law enforcement professionals uses compressed nitrogen to
deploy 2 small probes at typical distances of up to 7.7 m, [1,

2] allowing the delivery of ultra-short duration (50–100 μs)
electrical pulses (19–22 per second) which stimulate Type
A-α motor neurons between, and in close proximity to, the
probes. Stimulation of these neurons, which control skeletal
muscle contraction, typically leads to a loss of regional muscle
control and a fall to the ground, facilitating a safe end to a
violent confrontation or to gain compliance.

Several series have collated systematically and prospec-
tively collected data on the use of these devices. The
MacDonald study covered 12 USA law enforcement agencies
and 24,380 uses of force. They found that CEW subject injury
was reduced by 65% [3]. Taylor presented data from 13 USA
agencies including 16,918 uses of force and described a 78%
reduction in injuries requiringmedical attention [4]. The CEW
reduces all-cause mortality by 59–66% compared to alterna-
tive control techniques [5]. The reduction in the non-firearm
arrest-related-death (ARD) rate is consistent with the 2/3 re-
duction in firearm fatalities in agencies where CEW usage was
not overly restricted [6].

The CEW does have various well-established and pub-
lished complications including 16 deaths from traumatic brain
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injury due to CEW-induced falls [7], 6 fatal burns (4 petrol
and 2 methane) from CEW ignition [8], and, more recently, 2
additional deaths in men who had petrol on their clothing in
suicide threats. These 8 fatal fire deaths out of 3.9 million
CEW discharges give a risk of 2.1 per million [95% CI: 1.0–
4.0 by Wilson score interval]. As of 2017 there were also 29
reports of penetrating eye injuries out of 3.44 million field
uses [9]. These have led to 20 documented cases of complete
unilateral blindness or enucleation (risk of 5.1 per million
[95% CI: 3.3–7.9] [10].

One further concern following CEW exposure is cellular
muscle damage leading to rhabdomyolysis [11–13]. Studies
exploring this hypothesis have consistently failed to find clin-
ically significant increases in creatine kinase [14, 15], and one
study has described the lack of change in myoglobin levels
[16]. In contrast, there are no published human data on other
markers for rhabdomyolysis such as aspartate and alanine
aminotransferase and lactic acid dehydrogenase. There are
also no published human data on CEW effects on acute phase
protein levels.

Methods

This was a prospective, cohort study exploring the effects of a
single CEW exposure on multiple clinically relevant end-
points. The present report explores the circulating levels of
acute phase proteins and markers of skeletal muscle damage
specifically describing rhabdomyolysis.

Participants were cadets from the Austin (Texas) Police
Academy. All participants gave informed consent. The med-
ical monitor of the study interviewed each consenting volun-
teer to exclude any subjects with recent illness, musculoskel-
etal injury, pregnancy, lactation or with any known cardiovas-
cular, pulmonary, or hematological condition. The CEW ex-
posure was performed by trained Academy staff according to
the standard operating procedures of the device. The study
was approved by the Institutional Review Board of Texas
A&M University.

Each subject was positioned face-down on a narrow, slight-
ly raised padded mat (approximately 60 cm wide × 180 cm
long × 30 cm high) such that the torso and legs were supported
by the mat.

Alligator clips were placed on the skin of the participant’s
shoulder (clamped to the shirt in the mid-scapula region of
right shoulder) and waist (clamped to the upper edge of waist-
band mid-way from spine to right margin). These locations
were chosen to achieve maximal CEW-induced control of the
subject’s upper and lower extremities by simulating a 45–
60 cm CEW-probe spread [17]. The goal was to obtain the
highest level of muscle contraction within the training-
authorized 5 s discharge in order to increase the likelihood
of detecting a change in biomarkers. The alligator-clipped

electrodes were applied manually to ensure consistency of
lead placement throughout data collection. A standard
X26(E) CEWwas triggered by an instructor. Electrical current
delivery lasted for a duration of a standard 5-s cycle (single
pull of the trigger), as used in training and in the field.

Serum biomarker protocol

A 20 mL venous blood sample was taken before, 5 min after,
and at 24 h following the CEW exposure. All phlebotomies
were performed by certified emergency medical technicians
using routine venipuncture practices, wherein a sterilized in-
travenous catheter was placed in the vein of the anterior fore-
arm for ease and repeatability. All drawn blood specimens
were labeled, collected and transported to an off-site facility
by an independent laboratory organization (Laboratory
Corporation of America, Austin, TX). Samples were analyzed
for serum levels of C-reactive protein (CRP), alkaline phos-
phatase (ALP), albumin, globulin, albumin/globulin ratio, as-
partate and alanine aminotransferase, total protein, bilirubin,
creatine kinase, myoglobin, and lactic acid dehydrogenase.

All statistical comparisons were by a Wilcoxon signed-
rank test for differences between baseline and immediately
following discharge and between baseline and 24-h following
discharge. Post-hoc analysis demonstrated that the study was
powered to detect differences of 1 standard deviation with a
99% likelihood. The Holm-Bonferroni adjustment was used
to correct for multiple comparisons.

Results

A total of 29 subjects (26 male and 3 female) participated and
provided blood samples before and 5 min and 24 h following
the CEW exposure. Subject ages ranged from 21 to 55 years
and all were healthy with no co-morbidities or regular medi-
cation. The CRP, creatine kinase, myoglobin, and lactate de-
hydrogenase results for one subject were not available thus the
present report includes the results of 28 subjects (Table 1).

The CEW discharge led to a slight immediate reduction in
CRP which although unilaterally significant (p = 0.046) was
insignificant after correction for multiple comparisons by
Holm-Bonferroni (Fig. 1) and of doubtful clinical signifi-
cance. Similarly, myoglobin was decreased by 2% post ex-
posure (p = 0.019) but this was insignificant after correction
for multiple comparisons. (Fig. 2) There were no changes in
other biomarkers.

At 24 h, CRP levels decreased by 30% to 1.01 ± 0.80 mg/L
(p = .001) compared with baseline. ALP was unchanged im-
mediately after the CEW application but was reduced by 5%
(p = 0.0003) from baseline at 24 h (Fig. 3). No other bio-
markers were different from baseline at 24 h.
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Discussion

We believe that this is the first publication of the effects of
modern electrical weapons in humans on C-reactive protein,
alkaline phosphatase (ALP), albumin, globulin, albumin/
globulin ratio, aspartate (AST) and alanine aminotransferase
(ALT), total protein, bilirubin, and lactate dehydrogenase
(LDH). Our data suggest no clinically relevant adverse chang-
es in acute phase proteins or markers of muscle damage that
might lead to rhabdomyolysis.

Previous studies have reported on the effects of the TASER
X26(E) on total serum protein, CRP, and LDH in swine. One
extrememodel by Jauchem tested a protocol where anesthetized
swine had the ventilator was turned off during a total of 126 s of

exposure [18]. Total LDH was 705 ± 111 IU/L before and 791
± 159 IU/L afterwards (NS by pooled T-test). In another study,
with 60 s of total exposure, Jauchem reported no statistically
significant changes in either total protein or CRP [19].

Elevated AST is a highly sensitive marker for rhabdomy-
olysis being found in 95% of cases [20], and although an
elevated ALT is less sensitive (75% sensitivity), the absence
of any increase in either AST or ALT is consistent with the
existing literature showing only nominal increases of CKwith
a CEW exposure [14, 15]. The lack of change in LDH is also
consistent with a lack of rhabdomyolysis [21]. The only pre-
vious paper reporting myoglobin levels was by Ho [16], and
reported a minor increase in myoglobin after a 5 s exposure
(from 32.4 ± 15.1 ng/ml to 45.5 ± 27.1 and 51.3 ± 29.8 at

Fig. 1 C-reactive protein levels

Table 1 Biomarker values

Biomarker Units n Baseline Post p value 24 Hour p value HB limit

Alkaline phosphatase IU/L 29 66.2 ± 16.1 68.8 ± 20.6 0.29 62.7 ± 16.1 0.0003 0.0042

C-reactive protein mg/L 28 1.44 ± 1.39 1.43 ± 1.32 0.046 1.01 ± 0.80 0.0012 0.0045

Albumin g/dL 29 4.68 ± 0.25 4.61 ± 0.29 0.21 4.60 ± 0.26 0.15 0.0050

Creatine kinase U/L 28 318 ± 234 309 ± 221 0.15 335 ± 185 0.17 0.0056

Protein, total g/dL 29 7.30 ± 0.38 7.26 ± 0.35 0.68 7.23 ± 0.43 0.21 0.0063

AST (SGOT) IU/L 29 28.6 ± 9.4 28.7 ± 9.7 0.60 27.6 ± 7.0 0.25 0.0071

Myoglobin μg/L 28 36.8 ± 11.9 36.1 ± 13.9 0.019 38.7 ± 13.9 0.26 0.0083

A/G ratio 29 1.80 ± 0.25 1.76 ± 0.22 0.3 1.78 ± 0.22 0.37 0.010

ALT (SGPT) IU/L 29 28.7 ± 10.4 28.2 ± 11.1 0.6 28.1 ± 9.9 0.40 0.013

Bilirubin, total mg/dL 29 0.66 ± 0.27 0.64 ± 0.25 0.23 0.65 ± 0.27 0.63 0.017

LDH IU/L 28 207 ± 44 206 ± 41 0.87 211 ± 33 0.64 0.025

Globulin, total g/dL 29 2.62 ± 0.30 2.64 ± 0.25 0.61 2.63 ± 0.31 0.87 0.05

HB Holm-Bonferonni. *Bolded values are significantly different from baseline
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24 h). That study involved probes deployed from 2 m away
into the subject’s back (vs. our alligator clips) and thus the
impact and penetration traumamay have raised the myoglobin
levels rather than the electrical stimulation.

One issue to discuss is the apparent decrease in CRP and
ALP, at 24 h. These values are slightly above each subject’s
normal values before the CEW exposure. The study was con-
ducted during officer cadet training and our protocol did not
forbid physical training in advance of the CEW discharge.
Exercise can briefly raise ALP and CRP [22, 23], and the
baseline CK level of 317.6 ± 234.2 U/L is therefore consistent
with physical training before the CEW exposure. Emotional
stress can also raise CRP [24]. Such stress is common with

officers when faced with a mandatory CEW training exposure
that they know will be briefly painful. The relief following the
completion is typically accompanied by a more vagal tone.
This is thought to also explain the previously described drop
in blood pressure (systolic reduced by 3.6 mmHg and diastolic
by 3.0 mmHg) immediately after a CEW exposure [25].

All present TASER brand CEWs deliver less than 2 W
which is far less than the 5–7 W allowed by the Underwriters
Laboratories (UL) electric fence standard [26], such that CEW-
induced complications are not expected. Modern CEWs satisfy
the conservative IEC (International Electrotechnical
Commission) and European (Cenelec) 2.5 W limit for electric
fences [27–29]. There is also an electrical standard designed

Fig. 2 Myoglobin levels

Fig. 3 Alkaline phosphatase
levels
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specifically for the CEW: ANSI CPLSO-17. It requires certain
minimum outputs for effectiveness and has maximum limits for
safety [30, 31]. All TASER brand CEWs satisfy this standard
and thus injury is not expected.

Limitations

We did not require exercise abstinence during our study, and
this may have confounded our results. However, our data
showed a lowering of CRP and myoglobin shortly following
the exposure; these findings do not therefore counter our hy-
pothesis. There was no control group (with no CEW expo-
sure) for comparison.

Our exposure time of 5 s was less than that of some field
uses, which would theoretically increase the risk of rhabdo-
myolysis. In a study of real-world CEW uses, over 4% had at
least 20 s of probe-mode application [32, 33]. However, our
exposure vector was maximized and thus the total mass of
contracted muscle was greater than that seen in normal field
applications [17]. In addition, the only biomarker with an
increase was myoglobin (+2 μg/L at 24 h) and that increase
would still be clinically trivial even if multiplied by 4 or 40.

Conclusions

A full-trunk electrical weapon exposure did not lead to
clinically significant changes in the proteins or enzymes
tested. C-reactive protein and alkaline phosphatase were
decreased at 24 h. We found no evidence of a potential risk
of rhabdomyolysis.

Key points

1. Electrical weapon exposure does not make clinically sig-
nificant changes in serum protein or enzyme levels.

2. C-reactive protein and alkaline phosphatase are decreased
at 24 h.

3. Aspartate aminotransferase was slightly decreased at 24 h.
4. No biomarker evidence for rhabdomyolysis was seen.
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